博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
阿里P8面试官:硬件层级内存屏障如何帮助Java实现高并发?
阅读量:4100 次
发布时间:2019-05-25

本文共 17092 字,大约阅读时间需要 56 分钟。

  1. java多线程与高并发①volatile关键字的字节码原语
  2. java多线程与高并发②synchronized与volatile的硬件级实现
  3. java多线程与高并发③无锁、偏向锁、轻量级锁、重量级锁升级过程
  4. java多线程与高并发④内存屏障的基本概念
  5. java多线程与高并发⑤使用线程池的好与不好
  6. java多线程与高并发⑥为什么阿里开发手册建议自定义线程池
  7. java多线程与高并发⑦自定义线程池的最佳实践
  8. java多线程与高并发⑧常见线程池类型与应用场景
  9. java多线程与高并发⑨JVM规范如何要求内存屏障
  10. java多线程与高并发⑩比线程更牛X的线程,压测结果展现纤程的威力

多线程与高并发大概讲六大块

阿里P8面试官:硬件层级内存屏障如何帮助Java实现高并发?

 

第一:基本的概念,从什么是线程开始

第二:JUC同步工具,就是各种同步锁

第三:同步容器

第四:线程池

第五:高频面试加分项的一些面试用的东西,包括纤程

第六:Disruptor,不知道有多少同学听说过这个框架的,这个框架它也是一个MQ框架(Message Queue)叫做消息队列,消息队列非常多,后面还会给大家讲Kafka、RabbitMQ,Redis等这些都是消息队列。Disruptor是目前大家公认的在单机环境上效率最高的、性能最快的MQ。

  • 线程的基本概念
  • volatile与CAS
  • Atomic类和线程同步新机制
  • LockSupport、淘宝面试题与源码阅读方法论
  • AQS源码阅读与强软弱虚4种引用以及ThreadLocal原理与源码
  • 并发容器
  • 线程池
  • 线程池与源码阅读
  • JMH与Disruptor

阿里P8面试官:硬件层级内存屏障如何帮助Java实现高并发?

 

需要获取这份文档的朋友:转发文章并关注我,后台私信【马士兵】即可免费获取

阿里P8面试官:硬件层级内存屏障如何帮助Java实现高并发?

 

 

阿里P8面试官:硬件层级内存屏障如何帮助Java实现高并发?

 

CAS

Compare And Swap (Compare And Exchange) / 自旋 / 自旋锁 / 无锁

因为经常配合循环操作,直到完成为止,所以泛指一类操作

cas(v, a, b) ,变量v,期待值a, 修改值b

ABA问题,你的女朋友在离开你的这段儿时间经历了别的人,自旋就是你空转等待,一直等到她接纳你为止

解决办法(版本号 AtomicStampedReference),基础类型简单值不需要版本号

Unsafe

AtomicInteger:

public final int incrementAndGet() {        for (;;) {            int current = get();            int next = current + 1;            if (compareAndSet(current, next))                return next;        }    }public final boolean compareAndSet(int expect, int update) {        return unsafe.compareAndSwapInt(this, valueOffset, expect, update);    }

Unsafe:

public final native boolean compareAndSwapInt(Object var1, long var2, int var4, int var5);

运用:

package com.mashibing.jol;import sun.misc.Unsafe;import java.lang.reflect.Field;public class T02_TestUnsafe {    int i = 0;    private static T02_TestUnsafe t = new T02_TestUnsafe();    public static void main(String[] args) throws Exception {        //Unsafe unsafe = Unsafe.getUnsafe();        Field unsafeField = Unsafe.class.getDeclaredFields()[0];        unsafeField.setAccessible(true);        Unsafe unsafe = (Unsafe) unsafeField.get(null);        Field f = T02_TestUnsafe.class.getDeclaredField("i");        long offset = unsafe.objectFieldOffset(f);        System.out.println(offset);        boolean success = unsafe.compareAndSwapInt(t, offset, 0, 1);        System.out.println(success);        System.out.println(t.i);        //unsafe.compareAndSwapInt()    }}

jdk8u: unsafe.cpp:

cmpxchg = compare and exchange

UNSAFE_ENTRY(jboolean, Unsafe_CompareAndSwapInt(JNIEnv *env, jobject unsafe, jobject obj, jlong offset, jint e, jint x))  UnsafeWrapper("Unsafe_CompareAndSwapInt");  oop p = JNIHandles::resolve(obj);  jint* addr = (jint *) index_oop_from_field_offset_long(p, offset);  return (jint)(Atomic::cmpxchg(x, addr, e)) == e;UNSAFE_END

jdk8u: atomic_linux_x86.inline.hpp

is_MP = Multi Processor

inline jint     Atomic::cmpxchg    (jint     exchange_value, volatile jint*     dest, jint     compare_value) {  int mp = os::is_MP();  __asm__ volatile (LOCK_IF_MP(%4) "cmpxchgl %1,(%3)"                    : "=a" (exchange_value)                    : "r" (exchange_value), "a" (compare_value), "r" (dest), "r" (mp)                    : "cc", "memory");  return exchange_value;}

jdk8u: os.hpp is_MP()

static inline bool is_MP() {    // During bootstrap if _processor_count is not yet initialized    // we claim to be MP as that is safest. If any platform has a    // stub generator that might be triggered in this phase and for    // which being declared MP when in fact not, is a problem - then    // the bootstrap routine for the stub generator needs to check    // the processor count directly and leave the bootstrap routine    // in place until called after initialization has ocurred.    return (_processor_count != 1) || AssumeMP;  }

jdk8u: atomic_linux_x86.inline.hpp

#define LOCK_IF_MP(mp) "cmp $0, " #mp "; je 1f; lock; 1: "

最终实现:

cmpxchg = cas修改变量值

lock cmpxchg 指令

硬件:

lock指令在执行后面指令的时候锁定一个北桥信号

(不采用锁总线的方式)

markword

工具:JOL = Java Object Layout

org.openjdk.jol
jol-core
0.9

jdk8u: markOop.hpp

// Bit-format of an object header (most significant first, big endian layout below):////  32 bits://  --------//             hash:25 ------------>| age:4    biased_lock:1 lock:2 (normal object)//             JavaThread*:23 epoch:2 age:4    biased_lock:1 lock:2 (biased object)//             size:32 ------------------------------------------>| (CMS free block)//             PromotedObject*:29 ---------->| promo_bits:3 ----->| (CMS promoted object)////  64 bits://  --------//  unused:25 hash:31 -->| unused:1   age:4    biased_lock:1 lock:2 (normal object)//  JavaThread*:54 epoch:2 unused:1   age:4    biased_lock:1 lock:2 (biased object)//  PromotedObject*:61 --------------------->| promo_bits:3 ----->| (CMS promoted object)//  size:64 ----------------------------------------------------->| (CMS free block)////  unused:25 hash:31 -->| cms_free:1 age:4    biased_lock:1 lock:2 (COOPs && normal object)//  JavaThread*:54 epoch:2 cms_free:1 age:4    biased_lock:1 lock:2 (COOPs && biased object)//  narrowOop:32 unused:24 cms_free:1 unused:4 promo_bits:3 ----->| (COOPs && CMS promoted object)//  unused:21 size:35 -->| cms_free:1 unused:7 ------------------>| (COOPs && CMS free block)

synchronized的横切面详解

  1. synchronized原理
  2. 升级过程
  3. 汇编实现
  4. vs reentrantLock的区别

java源码层级

synchronized(o)

字节码层级

monitorenter moniterexit

JVM层级(Hotspot)

package com.mashibing.insidesync;import org.openjdk.jol.info.ClassLayout;public class T01_Sync1 {      public static void main(String[] args) {        Object o = new Object();        System.out.println(ClassLayout.parseInstance(o).toPrintable());    }}
com.mashibing.insidesync.T01_Sync1$Lock object internals: OFFSET  SIZE   TYPE DESCRIPTION                               VALUE      0     4   (object header)  05 00 00 00 (00000101 00000000 00000000 00000000) (5)      4     4   (object header)  00 00 00 00 (00000000 00000000 00000000 00000000) (0)      8     4   (object header)  49 ce 00 20 (01001001 11001110 00000000 00100000) (536923721)     12     4        (loss due to the next object alignment)Instance size: 16 bytesSpace losses: 0 bytes internal + 4 bytes external = 4 bytes total
com.mashibing.insidesync.T02_Sync2$Lock object internals: OFFSET  SIZE   TYPE DESCRIPTION                               VALUE      0     4   (object header)  05 90 2e 1e (00000101 10010000 00101110 00011110) (506368005)      4     4   (object header)  1b 02 00 00 (00011011 00000010 00000000 00000000) (539)      8     4   (object header)  49 ce 00 20 (01001001 11001110 00000000 00100000) (536923721)     12     4        (loss due to the next object alignment)Instance size: 16 bytesSpace losses: 0 bytes internal + 4 bytes external = 4 bytes tota

InterpreterRuntime:: monitorenter方法

IRT_ENTRY_NO_ASYNC(void, InterpreterRuntime::monitorenter(JavaThread* thread, BasicObjectLock* elem))#ifdef ASSERT  thread->last_frame().interpreter_frame_verify_monitor(elem);#endif  if (PrintBiasedLockingStatistics) {    Atomic::inc(BiasedLocking::slow_path_entry_count_addr());  }  Handle h_obj(thread, elem->obj());  assert(Universe::heap()->is_in_reserved_or_null(h_obj()),         "must be NULL or an object");  if (UseBiasedLocking) {    // Retry fast entry if bias is revoked to avoid unnecessary inflation    ObjectSynchronizer::fast_enter(h_obj, elem->lock(), true, CHECK);  } else {    ObjectSynchronizer::slow_enter(h_obj, elem->lock(), CHECK);  }  assert(Universe::heap()->is_in_reserved_or_null(elem->obj()),         "must be NULL or an object");#ifdef ASSERT  thread->last_frame().interpreter_frame_verify_monitor(elem);#endifIRT_END

synchronizer.cpp

revoke_and_rebias

void ObjectSynchronizer::fast_enter(Handle obj, BasicLock* lock, bool attempt_rebias, TRAPS) { if (UseBiasedLocking) {    if (!SafepointSynchronize::is_at_safepoint()) {      BiasedLocking::Condition cond = BiasedLocking::revoke_and_rebias(obj, attempt_rebias, THREAD);      if (cond == BiasedLocking::BIAS_REVOKED_AND_REBIASED) {        return;      }    } else {      assert(!attempt_rebias, "can not rebias toward VM thread");      BiasedLocking::revoke_at_safepoint(obj);    }    assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now"); } slow_enter (obj, lock, THREAD) ;}
void ObjectSynchronizer::slow_enter(Handle obj, BasicLock* lock, TRAPS) {  markOop mark = obj->mark();  assert(!mark->has_bias_pattern(), "should not see bias pattern here");  if (mark->is_neutral()) {    // Anticipate successful CAS -- the ST of the displaced mark must    // be visible <= the ST performed by the CAS.    lock->set_displaced_header(mark);    if (mark == (markOop) Atomic::cmpxchg_ptr(lock, obj()->mark_addr(), mark)) {      TEVENT (slow_enter: release stacklock) ;      return ;    }    // Fall through to inflate() ...  } else  if (mark->has_locker() && THREAD->is_lock_owned((address)mark->locker())) {    assert(lock != mark->locker(), "must not re-lock the same lock");    assert(lock != (BasicLock*)obj->mark(), "don't relock with same BasicLock");    lock->set_displaced_header(NULL);    return;  }#if 0  // The following optimization isn't particularly useful.  if (mark->has_monitor() && mark->monitor()->is_entered(THREAD)) {    lock->set_displaced_header (NULL) ;    return ;  }#endif  // The object header will never be displaced to this lock,  // so it does not matter what the value is, except that it  // must be non-zero to avoid looking like a re-entrant lock,  // and must not look locked either.  lock->set_displaced_header(markOopDesc::unused_mark());  ObjectSynchronizer::inflate(THREAD, obj())->enter(THREAD);}

inflate方法:膨胀为重量级锁

锁升级过程

JDK8 markword实现表:

无锁 - 偏向锁 - 轻量级锁 (自旋锁,自适应自旋)- 重量级锁

synchronized优化的过程和markword息息相关

用markword中最低的三位代表锁状态 其中1位是偏向锁位 两位是普通锁位

  1. Object o = new Object() 锁 = 0 01 无锁态
  2. o.hashCode() 001 + hashcode00000001 10101101 00110100 00110110 01011001 00000000 00000000 00000000 little endian big endian00000000 00000000 00000000 01011001 00110110 00110100 10101101 00000000
  3. 默认synchronized(o) 00 -> 轻量级锁 默认情况 偏向锁有个时延,默认是4秒 why? 因为JVM虚拟机自己有一些默认启动的线程,里面有好多sync代码,这些sync代码启动时就知道肯定会有竞争,如果使用偏向锁,就会造成偏向锁不断的进行锁撤销和锁升级的操作,效率较低。-XX:BiasedLockingStartupDelay=0
  4. 如果设定上述参数 new Object () - > 101 偏向锁 ->线程ID为0 -> Anonymous BiasedLock 打开偏向锁,new出来的对象,默认就是一个可偏向匿名对象101
  5. 如果有线程上锁 上偏向锁,指的就是,把markword的线程ID改为自己线程ID的过程 偏向锁不可重偏向 批量偏向 批量撤销
  6. 如果有线程竞争 撤销偏向锁,升级轻量级锁 线程在自己的线程栈生成LockRecord ,用CAS操作将markword设置为指向自己这个线程的LR的指针,设置成功者得到锁
  7. 如果竞争加剧 竞争加剧:有线程超过10次自旋, -XX:PreBlockSpin, 或者自旋线程数超过CPU核数的一半, 1.6之后,加入自适应自旋 Adapative Self Spinning , JVM自己控制 升级重量级锁:-> 向操作系统申请资源,linux mutex , CPU从3级-0级系统调用,线程挂起,进入等待队列,等待操作系统的调度,然后再映射回用户空间

(以上实验环境是JDK11,打开就是偏向锁,而JDK8默认对象头是无锁)

偏向锁默认是打开的,但是有一个时延,如果要观察到偏向锁,应该设定参数

没错,我就是厕所所长

加锁,指的是锁定对象

锁升级的过程

JDK较早的版本 OS的资源 互斥量 用户态 -> 内核态的转换 重量级 效率比较低

现代版本进行了优化

无锁 - 偏向锁 -轻量级锁(自旋锁)-重量级锁

偏向锁 - markword 上记录当前线程指针,下次同一个线程加锁的时候,不需要争用,只需要判断线程指针是否同一个,所以,偏向锁,偏向加锁的第一个线程 。hashCode备份在线程栈上 线程销毁,锁降级为无锁

有争用 - 锁升级为轻量级锁 - 每个线程有自己的LockRecord在自己的线程栈上,用CAS去争用markword的LR的指针,指针指向哪个线程的LR,哪个线程就拥有锁

自旋超过10次,升级为重量级锁 - 如果太多线程自旋 CPU消耗过大,不如升级为重量级锁,进入等待队列(不消耗CPU)-XX:PreBlockSpin

自旋锁在 JDK1.4.2 中引入,使用 -XX:+UseSpinning 来开启。JDK 6 中变为默认开启,并且引入了自适应的自旋锁(适应性自旋锁)。

自适应自旋锁意味着自旋的时间(次数)不再固定,而是由前一次在同一个锁上的自旋时间及锁的拥有者的状态来决定。如果在同一个锁对象上,自旋等待刚刚成功获得过锁,并且持有锁的线程正在运行中,那么虚拟机就会认为这次自旋也是很有可能再次成功,进而它将允许自旋等待持续相对更长的时间。如果对于某个锁,自旋很少成功获得过,那在以后尝试获取这个锁时将可能省略掉自旋过程,直接阻塞线程,避免浪费处理器资源。

偏向锁由于有锁撤销的过程revoke,会消耗系统资源,所以,在锁争用特别激烈的时候,用偏向锁未必效率高。还不如直接使用轻量级锁。

synchronized最底层实现

public class T {    static volatile int i = 0;        public static void n() { i++; }        public static synchronized void m() {}        publics static void main(String[] args) {        for(int j=0; j<1000_000; j++) {            m();            n();        }    }}

java -XX:+UnlockDiagonositicVMOptions -XX:+PrintAssembly T

C1 Compile Level 1 (一级优化)

C2 Compile Level 2 (二级优化)

找到m() n()方法的汇编码,会看到 lock comxchg .....指令

synchronized vs Lock (CAS)

在高争用 高耗时的环境下synchronized效率更高 在低争用 低耗时的环境下CAS效率更高 synchronized到重量级之后是等待队列(不消耗CPU) CAS(等待期间消耗CPU)  一切以实测为准

锁消除 lock eliminate

public void add(String str1,String str2){         StringBuffer sb = new StringBuffer();         sb.append(str1).append(str2);}

我们都知道 StringBuffer 是线程安全的,因为它的关键方法都是被 synchronized 修饰过的,但我们看上面这段代码,我们会发现,sb 这个引用只会在 add 方法中使用,不可能被其它线程引用(因为是局部变量,栈私有),因此 sb 是不可能共享的资源,JVM 会自动消除 StringBuffer 对象内部的锁。

锁粗化 lock coarsening

public String test(String str){              int i = 0;       StringBuffer sb = new StringBuffer():       while(i < 100){           sb.append(str);           i++;       }       return sb.toString():}

JVM 会检测到这样一连串的操作都对同一个对象加锁(while 循环内 100 次执行 append,没有锁粗化的就要进行 100 次加锁/解锁),此时 JVM 就会将加锁的范围粗化到这一连串的操作的外部(比如 while 虚幻体外),使得这一连串操作只需要加一次锁即可。

锁降级(不重要)

https://www.zhihu.com/question/63859501

其实,只被VMThread访问,降级也就没啥意义了。所以可以简单认为锁降级不存在!

超线程

一个ALU + 两组Registers + PC

参考资料

http://openjdk.java.net/groups/hotspot/docs/HotSpotGlossary.html

volatile的用途

1.线程可见性

package com.mashibing.testvolatile;public class T01_ThreadVisibility {    private static volatile boolean flag = true;    public static void main(String[] args) throws InterruptedException {        new Thread(()-> {            while (flag) {                //do sth            }            System.out.println("end");        }, "server").start();        Thread.sleep(1000);        flag = false;    }}

2.防止指令重排序

问题:DCL单例需不需要加volatile?

CPU的基础知识

  • 缓存行对齐 缓存行64个字节是CPU同步的基本单位,缓存行隔离会比伪共享效率要高 Disruptorpackage com.mashibing.juc.c_028_FalseSharing; public class T02_CacheLinePadding { private static class Padding { public volatile long p1, p2, p3, p4, p5, p6, p7; // } private static class T extends Padding { public volatile long x = 0L; } public static T[] arr = new T[2]; static { arr[0] = new T(); arr[1] = new T(); } public static void main(String[] args) throws Exception { Thread t1 = new Thread(()->{ for (long i = 0; i < 1000_0000L; i++) { arr[0].x = i; } }); Thread t2 = new Thread(()->{ for (long i = 0; i < 1000_0000L; i++) { arr[1].x = i; } }); final long start = System.nanoTime(); t1.start(); t2.start(); t1.join(); t2.join(); System.out.println((System.nanoTime() - start)/100_0000); } } MESI
  • 伪共享
  • 合并写 CPU内部的4个字节的Bufferpackage com.mashibing.juc.c_029_WriteCombining; public final class WriteCombining { private static final int ITERATIONS = Integer.MAX_VALUE; private static final int ITEMS = 1 << 24; private static final int MASK = ITEMS - 1; private static final byte[] arrayA = new byte[ITEMS]; private static final byte[] arrayB = new byte[ITEMS]; private static final byte[] arrayC = new byte[ITEMS]; private static final byte[] arrayD = new byte[ITEMS]; private static final byte[] arrayE = new byte[ITEMS]; private static final byte[] arrayF = new byte[ITEMS]; public static void main(final String[] args) { for (int i = 1; i <= 3; i++) { System.out.println(i + " SingleLoop duration (ns) = " + runCaseOne()); System.out.println(i + " SplitLoop duration (ns) = " + runCaseTwo()); } } public static long runCaseOne() { long start = System.nanoTime(); int i = ITERATIONS; while (--i != 0) { int slot = i & MASK; byte b = (byte) i; arrayA[slot] = b; arrayB[slot] = b; arrayC[slot] = b; arrayD[slot] = b; arrayE[slot] = b; arrayF[slot] = b; } return System.nanoTime() - start; } public static long runCaseTwo() { long start = System.nanoTime(); int i = ITERATIONS; while (--i != 0) { int slot = i & MASK; byte b = (byte) i; arrayA[slot] = b; arrayB[slot] = b; arrayC[slot] = b; } i = ITERATIONS; while (--i != 0) { int slot = i & MASK; byte b = (byte) i; arrayD[slot] = b; arrayE[slot] = b; arrayF[slot] = b; } return System.nanoTime() - start; } }
  • 指令重排序package com.mashibing.jvm.c3_jmm; public class T04_Disorder { private static int x = 0, y = 0; private static int a = 0, b =0; public static void main(String[] args) throws InterruptedException { int i = 0; for(;;) { i++; x = 0; y = 0; a = 0; b = 0; Thread one = new Thread(new Runnable() { public void run() { //由于线程one先启动,下面这句话让它等一等线程two. 读着可根据自己电脑的实际性能适当调整等待时间. //shortWait(100000); a = 1; x = b; } }); Thread other = new Thread(new Runnable() { public void run() { b = 1; y = a; } }); one.start();other.start(); one.join();other.join(); String result = "第" + i + "次 (" + x + "," + y + ")"; if(x == 0 && y == 0) { System.err.println(result); break; } else { //System.out.println(result); } } } public static void shortWait(long interval){ long start = System.nanoTime(); long end; do{ end = System.nanoTime(); }while(start + interval >= end); } }

volatile如何解决指令重排序

1: volatile i

2: ACC_VOLATILE

3: JVM的内存屏障

4:hotspot实现

bytecodeinterpreter.cpp

int field_offset = cache->f2_as_index();          if (cache->is_volatile()) {            if (support_IRIW_for_not_multiple_copy_atomic_cpu) {              OrderAccess::fence();            }

orderaccess_linux_x86.inline.hpp

  1. inline void OrderAccess::fence() { if (os::is_MP()) { // always use locked addl since mfence is sometimes expensive#ifdef AMD64 __asm__ volatile ("lock; addl $0,0(%%rsp)" : : : "cc", "memory");#else __asm__ volatile ("lock; addl $0,0(%%esp)" : : : "cc", "memory");#endif }}

出自:马士兵Java多线程与高并发

阿里P8面试官:硬件层级内存屏障如何帮助Java实现高并发?

 

关注我,私信回复“马士兵”即可获取 以下Java多线程与高并发资源

阿里P8面试官:硬件层级内存屏障如何帮助Java实现高并发?

 

实体书籍

阿里P8面试官:硬件层级内存屏障如何帮助Java实现高并发?

 

《多线程与高并发》电子版

阿里P8面试官:硬件层级内存屏障如何帮助Java实现高并发?

 

由于篇幅限制这里只能给大家把内容部分截取出来,因为此书籍资料是为内部资料,需要获取完整电子版/实体书籍以及实体书籍的读者朋友们转发分享此文,后续会告诉您如何获取

如何获取?

转发这篇文章,关注我,私信回复“马士兵”即可获取高清大纲,以上 spring,MyBatis,Netty源码分析,高并发、高性能、分布式、微服务架构的原理,JVM性能优化、分布式架构

如何私信?

关注我后,在手机,点进头像进我的主页,主页上方右上角有个私信,点击私信,如何回复关键字“马士兵”即可

转载地址:http://pjgii.baihongyu.com/

你可能感兴趣的文章
带WiringPi库的交叉笔译如何处理二之软链接概念
查看>>
Java8 HashMap集合解析
查看>>
自定义 select 下拉框 多选插件
查看>>
fastcgi_param 详解
查看>>
poj 1976 A Mini Locomotive (dp 二维01背包)
查看>>
MODULE_DEVICE_TABLE的理解
查看>>
No devices detected. Fatal server error: no screens found
查看>>
db db2_monitorTool IBM Rational Performace Tester
查看>>
postgresql监控工具pgstatspack的安装及使用
查看>>
【JAVA数据结构】双向链表
查看>>
【JAVA数据结构】先进先出队列
查看>>
谈谈加密和混淆吧[转]
查看>>
乘法逆元
查看>>
Objective-C 基础入门(一)
查看>>
通过mavlink实现自主航线的过程笔记
查看>>
Flutter Boost的router管理
查看>>
Vue2.0全家桶仿腾讯课堂(移动端)
查看>>
React+Redux系列教程
查看>>
19 个 JavaScript 常用的简写技术
查看>>
iOS开发支付集成之微信支付
查看>>